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Abstract-A simple dimensionless expression is developed for the natural convection heat transfer. Darcy 
flow characteristics are assumed for the liquid phase. The solid phase is an anisotropic and heterogeneous 
saturated porous medium with internal heat generation. Solid characteristics depend on the temperature. 
The first part of the paper shows that, using a dimensionless formulation, the heat transfer and Darcy 
equations are similar for two-dimensional problems. The second part reports the numerical results obtained 

on various cases with a comparison to classical natural convection models. 

INTRODUCTION 

CONVECTIVE heat transfer in porous media is of fun- 
damental importance to a number of technological 
applications, such as oil recovery, water supply man- 
agement in hydrogeology, geothermal exploitation, 
ground heat storage, radioactive waste management, 
ground water flow modeling and is also of interest in 
environmental sciences and geophysics. The general 
subject of natural convection has received increasing 
attention since the early experimental observations by 
Benard [I] and the theoretical work of Rayleigh [2]. 
Because of its practical importance,‘particular interest 
arose during the past decades in heat and mass transfer 
through natural porous media [3-51 including forced 
or natural convection [6,7]. Much of the work on this 
topic has been concerned with horizontal homo- 
geneous porous layers saturated with liquid phase 
[8, 91. Some of these works simplify the anisotropic 
porous medium to a single anisotropic layer or to a 
set of stratified homogeneous isotropic or anisotropic 
porous layers divided by permeable walls, assuming 
spatial continuity for each layer [1@16]. This 
approach does not take into account the possible het- 
erogeneity of the studied domain such as porous cavity 
or deformation processes in sedimentary formations. 
Other works treat such heterogeneous media at small 
scale as a homogeneous one at a greater scale using 

large-scale averaging techniques [ 17-2 I]. This method 
is of great interest to study multi-phase solid media 
which can be modeled using an homogeneous tech- 
nique. However, it is not really well adapted to the 
study of more complicated natural porous media such 
as geological formations. 

The purpose of the present work is to study the 
natural convection in a rectangular heterogeneous 
anisotropic saturated porous medium filled with a 
single phase fluid. Darcy flow characteristics are 
assumed for the liquid phase. The solid phase is an 
anisotropic and heterogeneous saturated porous 
medium with internal heat generation. Solid charac- 
teristics depend on the temperature. The first part of 
the paper uses a dimensionless formulation to simplify 
the heat and Darcy equations. For two-dimensional 
problems, the resulting equations are strictly similar 
and can be solved numerically using the same 
procedure. Numerical studies are reported and com- 
pared to classical approach published in the literature 
for homogeneous isotropic medium. The effects of 
boundary conditions on the temperature and flow 
fields are examined for different cases : (i) isothermally 
cooled horizontal upper edge, adiabatic vertical edges 
and constant fixed heat flow at the bottom without 
fluid exchanges at the boundaries; (ii) isothermally 
cooled horizontal upper edge, adiabatic vertical edges 
and constant fixed heat flow at the bottom with con- 
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Dimensional parameters 

variation coeffclent of the thermal 
conductivity with the 
temperature [K -‘I 
heat production [J m ‘1 
unitary vector for the horizontal 
coordinate system [m] 
unitary vector for the vertical 

coordinate system [m] 
accclcratioa of gravity [m 5 ‘1 

height of the recta& [m] 

isotropic mean permeability [rn’] 
symmetric tensor of the anisotropic 
permeability [ml] 

width of the rectangle [m] 
diagonal matrix associated to the 
coordinate system (.Y*, .T*), 

time [s] 
temperature [K] 
temperature at the reference level. 
i.e. I”,* = (r:+ 7-9/r [K] 
filtration velncily [m s ‘1 
horirontal coordinates parallel to 

1, [ml 
vertical coordinates parallel to H 

[ml 
volumic expansion coefficient of the 
satul-ating fluid [K ‘1 
variation coefficient of the dynamic 
viscosity of the saturating fluid 
with the temperature [K ‘1 
temperature diffcrcncc, TT - Ty 

IK] 
dynamic viscosity of the fluid 
[kgm-’ s ‘1 
dynamic viscosity of the fluid at T, 

[kgm ‘s ‘1 
symmetric tensor of the anisotropic 
thermal c.onductivitv 

IW m ‘K ‘1 
mass density of the fluid at Y; 
(kg m “1 
specific heat content (fluid + 
solid), at constant pressure 
[Jm ‘K ‘3 
specific heat content of the fluid. at 
constant pressure [J mm” KP’] 
vertical heat flow density through 

NOMENCLATURE 

horizontal or parallel isothermal 
limits [W m ‘] 

Q: horizontal heat flow density through 
verI.ical or perpendicular 
jsothermal surfilces [W In ‘1. 

Dimensionless parameters 

dimcnsionlcss heat production. 
(%*LH)/(tr A*AT*) 
dimensionless unitary vector for the 
horiLonta1 coordinate system 
dimensionless unitary vector for the 
vertical coordinate system 
dimensionless tensor of permeability in 20. 
(2;tr K) *K 

dimenstonless tensor of permeability in the 
dimensionless coordinate system (x, z). 
(il*K.~) 

Darcy modified filtration Rayleigh 
number for an heterogeneous medium. 
equation (13) 
dimensio:lless time. (f* * tr h);(2LH(pc)*) 
dimensionless temperature, 
(T*-TT,*):AT* 

dimensionless How velocity, 

D~.,~+--V (In tr A*) *A 
dimensionless filtration velocity, 
components [II,, c,] 
maximum dimensionless filtration 
velocity, ) L’,,,.,~ ) = Max [Z-I +c:] 
horizontal dimensionless filtration 
velocity, (2H(pc),v,)!tr A* 
vertical dimensionless filtration velocity, 

(X(p~)~v,)!tr A* 
dlmenslonless horizontal s coordinate. 

.Y’:‘L 
dimensionless vertical z coordinate. :*jH 
dimensionless geometric ratio. H/L 
dimensionless volumic expansion 
coefficient of the saturating fluid, Pth AT 

dimensionless variation coefficient of the 
dynamic viscosity of the saturating fluid 
with the tcmpcraturc. l’*ATy 
dlmcnsionlcss porosity 
dimensionless tensor of thermal 
conductivity in 2D. (2jtr A*) *A* 

dimensionless tensor of thermal 
conductivity in the dimensionless coordinate 
system {s, z). (3:. A * r) 
dimensionless vertical heat flow density 

through horizontal or paralicl 
isothermal limits, (ZHQc)/(tr ASAP) 
dimensionless horizontal heat flow density 
through vertical or perpendicular 
isothermal surfaces. 
(2L@T)/(tr A* Ai”) 
stream function at slationary conditions. 

Superscripts 
t transpose operator 
- 1 inverse operator. 
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Subscripts 
f fluid 

h horizontal or parallel to isothermal 
limits 

r reference level 
S solid 
V vertical or perpendicular to isothermal 

surface 
X horizontal component 
Z vertical component. 

Operators 

j rotation matrix = 
[ 

0 -1 
1 0 

note that j’ = -1 with I being the 
identity operator 

G! 

tr 
det 

V 

J(f) 
WA 
D 

metric tensor associated to the 
dimensionless coordinate system 

0 
(.x> =), 

l/J2 1 
trace operator 
determinant 
scalar product 
tensor product 
summation of terms a, with respect to i. 

c a, 

2D nabla operator, (d/d.x*, ?j&*) = 

grad 
Jacobian of vector function f 
Hessian of scalar functionf’ 
2D rotational operator, 
(Z/C%*. -a/&t*) = V j = curl 
Laplacian of a scalar functionf: 

stant rate fluid exchanges at the vertical boundaries. 
The study has been conducted for a wide range of 
parameters ; 0 < x < 100 ; Ra < 600. 

ANALYSIS 

The governing equations used to study free con- 
vection for incompressible fluids in a rectangular 
porous domain shown in Fig. 1 is a classical problem 
including four equations : the heat transfer equation, 
the Darcy equation (motion equation), the con- 
servative equation and the variation of the fluid 
characteristics with temperature. Practical inves- 
tigations commonly assume that the filtration velocity 
and its gradient are very small causing negligible iner- 
tial forces [7, 221. This approximation leads to the 
following set of equations for unstationary thermal 
transfer : 

v* @*VP) = (P’.)IV.VT*+(pc)*g --./I* 

Vp-p,g+qK-’ v = 0 

V(W) = 0 

pr = P,(l -Bth(T*--T,*) 

t 
z 

$0 

@,=O 

H 

T, go 
I 

1 9 

o,=o 

4 2 3 aw &J =o 

2 X 

T2 $=o L 

(1) 

(2) 

(3) 

(4) 

FIG. I. Confined saturated porous medium being iso- 
thermally cooled horizontal upper and lower edges, adiabatic 

vertical edges without fluid exchanges at the boundaries. 

v/ = Q(l-~*(T*-T,*)). (4’) 

It is common to simplify the mass balance and 
momentum equations assuming an homogeneous 
medium and that the variations of the fluid density are 
negligible except in the buoyancy term pg (Boussinesq 
assumption). However, for large scale hydrothermal 
systems, some characteristic parameters of the med- 
ium (q, A*) may depend on the lithology and on 
the temperature field while other parameters are less 
sensitive (K, fit,,, p,). Because of the heterogeneity and 
of the thermo-dependence of the porous medium, 
classical convection equations (see ref. [7]) derived for 
homogeneous porous medium could not be applied. 
A more elaborate set of equations must be established 
under given simplified assumptions. 

HEAT TRANSFER EQUATION 

The heat transfer equation (1) is valid assuming 
that the difference between the temperature for the 
solid phase T: and for the fluid phase pis negligible. 
It assumes that the filtration velocity is not too high. 
Then, the medium can be equivalent to a unique con- 
tinuum at the average temperature r* = Tf* = c. This 
approach is valid for most common saturated porous 
geological media such as sedimentary formations, but 
could be limited for modeling transfers through frac- 
tured rocks. The volumic heat capacity of the satu- 
rated porous medium (PC)* is assumed to depend on 
the porosity according to a simple model as following : 

(PC)* = (1 -c)(pc), +c:(p&. (5) 

The thermal conductivity tensor A* decreases gen- 
erally with increasing temperature following the com- 
monly used relationship [23] : 

A* = A;/(l+a,(T*-T;) (6) 
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where A,* is the thermal conductivity at 25 C ; a usu- 
ally ranges from 5 x 10m4 ‘C’ to iO_’ “C-’ according 

to the nature of the porous medium. The thermal 
conductivity of rocks depends on various parameters 
(bulk composition. texture. grain size and mineral 
composition). At 25 C, the thermal conductivity. A,T, 
of common rocks increases from 2 W m-’ C ’ for 
migmatites to 3 W in --! “C ’ for granites 1241. These 

variations depend strongly on the quartz content of 
the rock, according to the experimental relationship 

established by Koutsikos [25] : 

A* = *~~1’~1(?:t1~07~*;S”43~l--Q;~ 
0 Q (7) 

where A4 is the thermal conductivity of quartz (aver- 
age value 7.7 W mm. ’ ’ Cm ‘) ; A$ is the thermal con- 

ductivity of the other minerals (usually ranging 
around 1.85Wm~“C’);andQ:isthequartzcon- 
tent of the rock (in wt.%). 

This thermo-dependence of the thermal con- 
ductivity makes the heat transfer equation non-linear. 
This is a serious complication compared to the usual 
approach which assumes a constant thermal con- 
ductivity for the porous medium. However, the effect 
of the temperature on the thermal properties could 
not be neglected in problem involving large porous 
medium such as geothermal systems. 

For isotropic medium, the equivalent thermal con- 
ductivity may be related experimentally to the 
porosity according to ref. [E] : 

where il, and i., are, respectively, the thermal con- 
ductivity of the solid and of the fluid. This relationship 
is valid only if the solid and fluid phases are well 
dispersed and if the contrast between their thermal 

properties is not too high. 
For anisotropic media. the equivalent thermal con- 

ductivity tensor A* is a rather more complicated func- 
tion of the thermal properties of each constituting 
phase, which can be experimentally determined. 

DIMENSIONLESS HEAT TRANSFER EQUATION 

Introducing the dimensionless conductivity A and 
noting that: 

$-&V*(hVT*) = V.(AV~*}+V.(lntrA~).AV~* 

equation (1) could be rewritten as : 

2(P), 2(/X)* c’T* 
V.(hVT*) = =IZ*V’ VT*+ - ____ 

trA dt* 

2/P 
- ~ - V * (In tr A*) * AVT*. 

tr A* 
(9) 

Equation (9) shows that the heterogeneities of the 
thermal conductivity within space are taken into 
account as a source term (similar to an internal heat 
generation) in the second member of the heat equa- 
tion. Using the dimensionless variables defined in the 

nomenclature table, equation (9) can be simplified 

into : 

V@TT) = v.vT+ $4 
u = uDOTC). -V (In tr A*) * X (10) 

where V(ln tr A*) denotes the derivative of In tr A* 
with respect to the dimensionless coordinate system 
(s, Z). 

DARCY EQUATION 

The equation (2). in which some inertial terms have 
been omitted, is a generalized form of the steady state 
Darcy relationship. It is valid for describing the 
motion of the fluid phase in convective systems whose 
filtration velocity is not too important [7] and for 
systems such that the ratio between the isotropic mean 
permeability and the height of the domain (k/H2) is 
less than lo- ‘. Assuming a constant specific heat con- 
tent for the fiuid and solid and a thern~o-dependency 
of the physical characteristic variations of the fluid, p 
and q, equation (2) can be rewritten [22] as : 

- (I -i’T)a,,,,,, = ts +p,’ 

where u,,,,~,.., i, Z’, fl, are the dimensionless variables 

defined in the nomenclature table. Ru* is the local 
filtration Rayleigh number defined for an anisotropic 
and heterogeneous porous medium as : 

It explicitly describes the dimensionless criterion for 
the onset of free hydrothermal convection by mea- 
suring the relative influence of the ‘driving’ force for 
convection onto the ‘stabilizing’ effects due to the 
viscosity of the fluid qr and to its thermal diffusivity. 
Homogeneous porous media have been widely studied 
in the past (see ref. [6] for a review). The condition 
for the occurrence of thermoconvective cells in such 
media is that the filtration Rayleigh number is greater 
than a critical value of Rq., = 471’. For higher values 
of Ra, cells become unstable, then convection is tur- 
bulent. Using a classical linear theory approach [I I] 
established the theoretical conditions on the appear- 
ance of natural convection in a simple anisotropic 
homogeneous porous layer whose permeability and 
conductivity tensor being diagonal, respectively, of 
the form K = (kh, k,, k,), A* = (2 _,,, EL,,, R,). Using a 
diilferent definition for the filtration Rayleigh number 
Ra’, the author obtained the following conditions: 
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(13) 

where L/H stands for the characteristic dimension 
of the convective cells. Incorporating these results in 
equation (12) for a 2D anisotropic porous layer, one 
obtains an alternative tensor invariant formula for the 
critical value for Ra* : 

Ra* = trK [tr (A* K-‘)“‘J’ 
CT tr A* 

r? (14) 

or using dimensionless tensor conductivity or per- 
meability 

Ra,*, = [tr (AKm’)“2]2z’. 

DIMENSIONLESS FORMULATION OF THE DARCY 

EQUATION 

Introducing the dimensionless quantities tiDarcy, f 
andg’, the Darcy equation can be rewritten in a stream 
function form as : 

,f= Ra*s& 
[ 1 
T-l 

r 8’ 

trA* qr 
.Y’=;rK~[l-YTl 

(VP)’ =,fe, -g’i? (Drj)‘. (15) 

By cross-differentiation and applying the 2D tensor 
relationship tr (D’Vp) = 0 reported in Appendix 1, 
equation (15) can be simplified into the following non- 
linear differential equation involving the stream func- 
tion $ (see Appendix 2) : 

tr (D’(&)) = tr (D’(q’(D$) d-l)). 

Further simplifications with respect to the tensorial 
2D properties of operators D and V (see Appendix 2) 
could be used to derive a more practical simple form 
for the Darcy equation : 

v*(kv*) = u*v*-s (16) 

with the following dimensionless quantities 

u = -VlngZ 

S = (kVlng+Vh)*e, 

L 1 T-l 
P 

h=Ro*detd]l_y,, 

The similarity between equation (16) and the heat 
equation (10) written in a dimensionless form should 
be noted. The vector quantity u would be equivalent 

to the filtration velocity v in the heat equation, while 
S would be similar to a source term. This similarity is 
of great interest when solving numerically the coupled 
steady state equations of mass and heat transfer 
because the same procedure can used to solve equa- 
tions (10) and (16). 

EVALUATION OF THE SOURCE TERM S 

Logarithmic derivation techniques can be used to 

evaluate the source term S 

Vlng = Vln(trA*)-Vln(trK)-Vln(detk) 

YVT 
-Vln(WJ- (l_yT) 

Vlnh = Vln(detk)+Vln(Ra*) 

VT yVT 
+--- ~ 

+ (I-YT) 

Vln (Ra*) = Vln ((PC)‘) +Vln (trK) -Vln (trA*) 

= ;y_T;;VT*e,. (17) 

Equation (17) highlights the physical significance of 
the source term S which depends on the anisotropic 
properties of the porous medium through det k and 
on the variations of the fluid viscosity with tempera- 
ture, while the term u depends on thz heterogeneity 
of the medium through= the terms K, V In (tr K), 
V In (tr A*), V In (det K). Note that for an isotropic 
homogeneous medium saturated by a Newtonian fluid 
with a constant viscosity g independent of the 
temperature we have det g = 1. V In (tr K) = 
V In (tr A*) = 0. The source term S in the Darcy equa- 
tion is reduced to the classical form S = Ra* VT* e,. 

CONSERVATIVE EQUATION 

The Darcy equation has been derived assuming that 
the variations of the fluid density are negligible except 
in the buoyancy term pg. This assumption also implies 
a simplification for the mass balance equation (3) 
which can be rewritten using the dimensionless fil- 
tration velocity uDarcy 

V. (tr A* uDarcy) = 0. (18) 

In most common applications, the variations of the 

thermal conductivity within space represented by the 
term tr A* could be neglected in equation (18) com- 
pared to the variations of the filtration velocity due to 
the permeability. For example, the thermal con- 
ductivity of common rocks ranges between 1 and 
3 W m-’ Km’ within the temperature interval 25 
to 300°C while the permeability ranges between 10 ” 
to 10 I2 m2. This approximation gives rises to the 
simplification of equation (18) into the following : 
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v * uDarc> = 0. (19) 

It should be pointed out that the Darcy velocity unarc, 
in equation (I 5) derives from the cross derivation of 
the stream function (D$)‘. This property auto- 
matically assumes equatio~l (I 9) because V * (D$)’ is 

always equal to 0 (Appendix 1). 
Note that when the variation of the thermal con- 

ductivity within space could not be neglected, develop- 

ing (18) (Appendix 1) and, incorporating (19) into it, 
the conservative equation is transformed into : 

V tr A* * u,:,,~ = 0. (20) 

Equation (20) forces the scalar product of the dimen- 
sionless Darcy velocity by the gradient of the thermal 
conductivity to be equal to zero. In homogeneous 
media, this equation is automatically satisfied because 
the thermal conductivity is constant. At the interface 
between two homogeneous layers with different ther- 
mal conductivity, this implies the Darcy velocity to be 
parallel to the interface. which is commonly the case 
when the two layers have different pernleability. In 
other cases, equation (20) has to be included in the 
governing equations. This case will be no longer dis- 
cussed in the following. 

THE COMPLETE SET OF EQUATIONS 

Finally, from the previous devcI~~plnents, the gov- 
erning equations to study free convection are reduced 
to the dimensionless coupled equations (10) and (16) : 

V&T) = uv+g-n 

V~(~Vl&) = u*vr/l-s 

II= -VlngIZ S= (I_?;T) 
i&~*det(H’)~~.~ 

I 

1 trh* n, 

9 = a trK (PL.)( 
----[1-yT] (21) 

This set of equations is valid for incompressible 

fluids in an anisotropic and heterogeneous porous 
medium. At any point of the studied domain, the field 
pressures can be derived from the integration of the 
following equation involving the stream function 
given appropriate boundary conditions : 

(VP)’ =.fi, -&’ (D$)‘. (22) 

In sumlna~, the analysis concludes with two differ- 
ential equations reported in (21) that related two 
unknown functions (7’, 4). in order to close the prob- 
lem we turn our attention to the boundary conditions 
along the border of the studied area. 

BOUNDARY CONDITIONS 

Different boundary conditions can be examined 
depending on the problem to be solved. Classically, 
two types of boundary conditions can be detined for 
each unknown functions (7: $). The first one. known 
as the Neumann conditions, imposes the potential 
along a boundary, for example the temperature and 
the stream function are conslant. The second type of 
conditions, known as the Dirichlet conditions, 
imposes the flow at the boundary, for example the 
heat flow or the fluid flow through a border. 

Consider now the Cartesian frame .X-J attached to 
the rectangular domain containing a saturated porous 
medium. Using the dimensionless system of coor- 
dinates (x, z), the boundary conditions can be written 
as the following : 

Upper and lower horizontal boundary conditions 1 
and 2: 

isothermal cooling : 

T(x, 1) = (TT- 7’a/Ar* : 7&O) = (T:- T3IA.T” 

no Ruid exchanges : 

r,(x. 1) = - $Y, 1) = 0; 

r-,(x.) = - g (x, 0) = 0. 

Upper and lower horizontal boundary conditions 3 
and 4: 

adiabatic vertical edges : 

@“(O,Z) = Z(0.z) = 0 

no fluid exchanges : 

T, $=O 9 

I I I 
t 

z 

$=O 

$=O 

H 

Q”y=O 

4 3 aw L1_ z =o 

2 x 

Fro. 2. Confined saturated porous medium being iso- 
thermally cooled horizontal upper edge, adiabatic vertical 
edges and constant fixed heat flow at the bottom without 

fluid exchanges at the boundaries. 
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Calculated Stream Function and Temperatures field 
Assuming isotropic and homogeneous porous medium 

Ra= 80 

4 

5 

Ra = 160 

w 

0 5 10 

H/L = 1 

FIG. 3. Steady convective state in an isolated homogeneous isotropic porous medium. Boundary conditions : 
constant temper~~ture at the horizontal upper (loo’ C) and lower (130 C) edges. adiabatic vertical edges. 
(a) Square. H/L = I. Ro = 80; (b) square, HI = I, RLI = 200; (c) rectangle, H:L = 1.8, Rrr = 200; 

(d) rectangie, H/L = 0.33, Ru = 80. 

?x(O,=) = - $$O.-_) =T 0. 
fD,, (x. 0) = const. 

In the following, we will examine the effects of the 
Isothermally cooled horizontal upper e&e, adiabatic boundary conditions on the temperature and flow 
vertical edges and constantfixed heat,flow at the bottom 
without$uid exchanges at the boundaries (Fig. 2) 

fields for two different cases : (i) isothermally cooled 

The boundary conditions are the same as previously 
horizontal upper edge, adiabatic vertical edges and 
constant fixed heat flow at the bottom without fluid 

except for the lower horizontal border 2. 
Constant fixed heat Aow at the base : 

exchanges at the boundaries ; (ii) isothe~ally cooled 
horizontal upper edge, adiabatic vertical edges and 
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40 

30 

20 

10 

0 

10 

5 

Ra=2OO 

H/L=1 . 

-4 

-2 

0 

2 

100 

1.10 

120 

130 

Ra=SO H/L = 0.33 

constant fixed heat flow at the bottom with constant double iterating method which allows mutual coup- 

rate fluid exchanges at the vertical boundaries. ling of the equations. Firstly, the heat equation (10) 

SOLUTION PROCEDURE 
is solved by a finite difference scheme method in order 
to obtain the stationary temperature field given the 

The Darcy and heat transport equations are solved conditions imposed at the boundaries. 
by a Gauss-Seidel over-relaxed algorithm using a The numerical resolution starts from an initial state 
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where the saturating fluid phase of the porous medium 

is motionless but for which a preliminary temperature 

solution is imposed. A classical biharmonic function 

is often chosen for the initial temperature field in 
agreement with theoretical works reported in the 
literature on convection [6]. Successive instability 
modes can occur within the porous medium depend- 

ing on the initial state of the system. Physically, the 
cellular organization may be described as the super- 
position of different layers of cells whose dimensions 
are smaller than the characteristic dimension. The 

periodicity of the initial solution must be chosen in 

agreement with these successive instability modes. In 
this work, the periodicity of the initial solution is a 

function of the grid node number. 
Then, the thermo-dependent terms of the second 

member of the Darcy equation (16) are evaluated at 

each grid node as well as the non-linear part of equa- 
tion (10). Finally, the Darcy equation is numerically 

solved using a similar procedure as previously used 

for equation (10). Once the velocity field is estimated, 

these results are used to evaluate the second member 

of equation (IO). 
This flip flop procedure is iteratively applied until 

the convergence of the solution is reached. We stop 

computation when the difference between two suc- 

cessive solutions is less than 10-j and 10-I for the 

temperature and for the stream function respectively. 

The discretization scheme used in this study is a 
classical square finite ditTerence scheme using a five 

point formula inside the studied domain and a four 

point formula at the boundaries. The total number of 

iterations necessary to reach the complete solution 
depends on the situation but is usually of 50 iterations. 

Systems involving large local Rayleigh number 

could be divergent when the numerical procedure used 
to invert the linear system is not accurate enough. 
Stabilization techniques could be applied in these situ- 

ations, but, in some cases, they could be tricky. The 

main problem comes from the source term in the 

second member of the Darcy equation which acts as 
a perturbation term. When the perturbation is too 

large, the system of equations becomes divergent. A 
typical situation is when the permeability of the aniso- 
tropic porous medium has a high contrast in magni- 

tude, for instance varying from lo-” to 10 -I6 m2. 
This problem can be solved using the following 

algorithm: (i) estimate a pseudo solution for the 

temperature and velocity field at a Rayleigh number 
Ra = Ra, for which the convergence of the equations 

occurs ; (ii) increase Ra by a step ARa in order to 
obtain a new set of equations ; (iii) solve numerically 
the set of equations using the previous stationary tem- 
perature and velocity field as an initial solution; 
(iv) apply (ii) to (iii) iteratively till the real Rayleigh 
number is reached. We have tested this procedure 
for Rayleigh numbers ranging up to 600 without 
problems. Note that this algorithm is not valid for 
transient problems. 

NUMERICAL ILLUSTRATIONS 

Several trial runs were made to compare the accu- 

racy of the results with those obtained by previous 
works especially for homogeneous porous media for 
which extended theoretical, experimental and numeri- 
cal results have been published [4-8, 12, 13, 161. 

Homogeneous isotropic porous media 

The first example is an homogeneous porous med- 
ium isothermally cooled at the horizontal upper and 
lower edges, adiabatic vertical edges without fluid 
exchanges at the boundaries. The stream function and 
the temperatures field reported in Fig. 3 have been 
computed for various Rayleigh numbers and 
geometry. The results obtained by the formulation 
developed in this paper are fairly similar to the classi- 
cal behavior of an homogeneous porous medium [6]. 

When the medium is homogeneous and isotropic, 
the stationary Darcy velocity and heat equations are 
simplified into a classical form : 

AT = v*VT 

A$ = -Ra*VT*e, (23) 

with the boundary conditions : I/J = 0; c = const. ; 
z = const.;@T = @$ = 0. 

Once the system enters a convective state the above 
boundary conditions make the horizontal tem- 
perature variations likely quite independent of the 
Rayleigh number. Physically, the modulus of the fil- 
tration velocity 1 u 1 equal to 1 Vlc, 1 (equation (1.5)) 
becomes proportional to the Rayleigh number Ra*. 

This simple approximation is not totally true because 
the two equations are coupled. A more precise theor- 
etical expression can be obtained using a linear stab- 
ility analysis approach [14]. However, this relation- 
ship can be used to test the reliability of the numerical 
results obtained using the formulation derived from 
equation (21). 

We conduct the numerical experiment for Rayleigh 
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; 100 

x 80 
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40 

20 
I / 
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I 1 
0 100 200 300 400 500 600 

Ra' 

Fro. 4. As expected from the theory, numerical results 
obtained from a steady convective state in an homogeneous 
porous medium (H/L = 1) show that the maximum dimen- 
sionless filtration velocity (I u,,, I) is proportional to the 

Rayleigh number according to: 1 u,,, 1 = (Ra*-47?)/3. 
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Calculated Stream Function and Temperatures field 
Assuming anisotropic and heterogeneous porous medium 

Ra = 390 

0 
0 

b) 

30 60 90 

Ra= 80 H/L = 0.33 

FIG. 5. Steady convective state in an heterogeneous stratiform porous medium constituted by homogeneous 
isotropic layers. Boundary conditions : constant temperature at the horizontal upper (q) and lower (z) 
edges, adiabatic vertical edges. (a) Two horizontal isolated layers of similar thickness, H,‘L = I. 
fl = lOO”C, n = 130’ C, Ra = 390 ; (b) three horizontal isolated layers of similar thickness, H/L = 0.33, 
c = 100’ C, T$ = 130’2C, Ra = 80 ; (c) slope porous layer inter-bedded in an impermeable medium with a 
lateral exchange of fluid of lo-” m3 SK’, H/L = 0.33, F = 10°C z = 23O”C, Ra = 120; (d) slope porous 
layer inter-bedded in an impermeable medium with a lateral exchange of fluid of 10 -‘” rn’ SK’. Boundary 
conditions : constant temperature at the horizontal upper (fl) and constant fixed heat flow at the bottom 

(Q*). adiabatic vertical edges: H/L = 0.33, Tf = lO”C, Q* = 100 mW m-l, Ra = 280. 
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Fig. 5. Continued. 
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numbers ranging from 0 to 600. The results reported 
in Fig. 4 show a linear relationship between the , u,ax , = @a* -4n2) 

3 (241 
maximum of the dimensionless Darcy velocity and the 
Rayleigh number. As expected a non-convective state Heterogeneous isotropic porous media 
without fluid movements occurs for Rayleigh number The second example is constituted by three hori- 
lower than 40. Then, the maximum Darcy velocity is zontal homogeneous isotropic porous layers char- 
a linear function of Ra* according to : acterized by a high contrast in permeability and con- 
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ductivity. Different situations reported in Fig. 5 have 
been studied varying the geometry and the contrast 
between the layers. This medium is obviously het- 
erogeneous at large scale. The boundary conditions 
are similar to the previous example, i.e. a constant 
temperature at the horizontal upper and lower edges, 
adiabatic vertical edges, no fluid exchanges across the 
border. 

The first case corresponds to a porous horizontal 
layer (2) inter-bedded in two impermeable horizontal 
isotropic layers, respectively, upper (1) and lower (3). 
The physical characteristics are respectively : A, = 5.2 
W mm’ Km’ K = 10-16 m2. A ~2 2.5 W mm’ 
K = lo- 1: n; : = 5.2 w m’- *K- K = It_- yii: 2. 1 i 1 16 2 

13 

Tie resulting s&Hrn function computed from the res- 
olution of the set of equations (21) clearly shows (Fig. 
5(b)) preference circulation of fluid in the porous 
intermediate layer. The number of convective cells is 
in agreement with the theoretical number predicted 
by equation (I 3). 

The second situation (Fig. S(c)) corresponds to an 
anisotropic porous layer inter-bedded horizontally 
into an homogeneous impermeable medium: 1, = 
2.7 W m-’ K-‘, K, = 10mi6m2; & = 2.7 W mm’ K ‘, 
(k& = lo-‘? m2, (k,), = lo-” m’; & = 2.7 W m-’ 
K-‘, K3 = lo-” m2. 

Finally, Fig. 5(d) reports the results obtained for 
an homogeneous porous layer with a slope of cp = 15” 
inter-bedded into an homogeneous medium. A fluid 
flow at a rate of ffDanq = IO-” m s-’ enters the sys- 
tem from above through the lower boundary. The 
properties of the medium are the following: l, = 
5.2 W m-’ K-‘, K, = lo-” m2; d2 = 2.6 W mm’ K-‘, 
K, = 10-I” m2; I, = 5.2 W m-’ K-‘, KJ = lo-l5 m2; 

UDUCY 
= 1()-l” m s-I. 

CONCLUSION 

The numerical results obtained from the resolution 
of the set of equations (21) are in good agreement 
with experimental data and previous results for an 
isolated box [6, 261. However, the formulation 
adopted makes possible the numerical simulation of 
natural or forced convection in porous media with 
complex geometry and heterogeneous properties. 
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APPENDIX 1. BASIC TENSOR FORMULA 

Notations 
,f scalar function 
v vector function 
K a matrix 

Simple,fbrmula 
Scalars 

H(f)=V’Vf=V@VQf=V*f 
tr H(f) = A,f = V-Vf 
Df= (Wf = (Vf)j 
D’Vf= j’V’Vf = j’H(f) 
tr ((Vf)‘D) = tr (D’Vf) = tr (j’H(f)) = 0 

as tr K’ = tr K 
tr (V’ (Vf) K) = V.(K’ (Vf)‘) 
tr (VI 9. ((?f )K) = Vg * (K’(Yf )‘) 

Vectors 

(vVj)’ = j’V’v’ 
V’(v’j) = (V’v’)j 
det (K)jK-’ = Kj. 

Composedformula 

V(fg) =.fVg+gYf 
V(fv) = v 0 vf+.f vv = vVf+f vv 
D’(.fi’) = f D’v’+ (D’f)v’ 
(fiV)’ = V’(fv’) =fV’v’+ (V’f)v’ 
V.(D,fl’= 0 

V’(v’K) = (K’vV)’ = V’v’ * K + 

V’(PfM = V’((Vf)W. 

APPENDIX 2. DERIVING A SIMPLE FORM FOR THE 
DARCY EQUATION 

Applying the D operator on the right part, then trans- 
posing and using the above tensor formula= and the sym- 
metrical property of the permeability tensor K, equation (14) 
can be rewritten : 

[(Vp)‘D]’ = D’Vp = j’H(p) = D’(fe:)-D’(g’(Dti)t-‘). 

(Al) 

Further, taking the trace of the two members in (Al) and 
noting that tr (jtH@)) = 0, it becomes a differential equation 
with respect to $ : 

tr (D’(fe:)) = tr (D’@‘(D$)g-I)). (A2) 

Note that this technique based on the property of the trace 
operator is an elegant way to cross differentiated equation 
(14). However, direct computation would be much more 
complicated becausef and g’ are not constant with respect to 
the coordinate system in the anisotropic non-homogeneous 
case. Further simplifications can be done in (A2). 

Evaluation of tr (D’(fe’,)) (see Appendix I) 

D’(fe;) = j’V’(fe;) = j’(V’pe;) = D’,f*e; 

as e\ isconstant, V’ e; = 0 

tr(D’.fe:)=tr{[$-g]O[Ol]) 

= tr af 
o _ilf =-dx* 

= -Vpe,. (A3) 

ax* 
L J 

Evaluation of tr (D’(g’(D$)g-‘)) 

D’(g’(D$)t-‘) = D’(g’(V$)jkm’) 

= D’@(V$)Z?j) 

= j’[V’@(Vll/)d)]j 

with g’ = g det (Z?) note that det (K) = det (k) 

V’@(V$)k) = gV’((V((/)b) + V”g’ ((V$)k) 

tr (D’@‘(D$)g-‘)) = tr (V’@(V$)f)) as tr (j’Kj) = tr (K) 

= g tr (V’((V$)&) + tr (V’g* ((V$)&) 

=gv~(lzV*)+vg~fi$. (A4) 

Evaluation of (A2) 
Incorporating (A3) and (A4) into (A2) and dividing both 

member, by g. the Darcy equation is simplified into : 

V.(RV$) = -v9.&_Yf. 
9 9 

e1 (A3 

using the following quantities : 

S= (hVIng+Vh)*e, 

[ 1 T--l 
= B 

h = Ra*detK ,I_yT1 

I trA* 

’ = det K tr K (pc)r 
-7~--111-[1-~7-] 

Note that h is defined by f = hg, so equation (A5) could be 
rewritten as : 

V.(fV$) = -VIn@)*tV$-[hVIn@)+Vh].e, 

Finally, introducing u = -V Ing i?; S = (h V Ing+V 11) .e,, 
the simple form of the Darcy equation is derived for an 
anisotropic and heterogeneous porous medium : 

v . (2Vij) = uvi -s. (A61 


